Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Growing need for humanities and social science studies in uranium waste disposal

Yasuda, Hiroshi*; Fumoto, Hiromichi*; Saito, Tatsuo

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(8), p.610 - 614, 2021/08

Regarding the handling of uranium bearing waste, which is contaminated with uranium, which is a naturally occurring radionuclide, and its descendant nuclides, in recent years, the Japan Nuclear Regulatory Commission, etc. have been carefully and actively deliberated based on the knowledge of natural science and safety engineering. It was carried out, and as of March 2021, a certain policy has been shown. On the other hand, when disposing of uranium waste, which may cause dose exposure to future generations, the authors consider not only the science and engineering perspectives that have been conducted so far, but also the humanities and social science perspectives. We have been discussing with experts in related fields, thinking that it is necessary. In this report, we will introduce the background that brought about such an idea and the direction of future discussions.

Journal Articles

Activity report of the task group of radiation protection about wastes containing natural radioactive nuclides

Saito, Tatsuo; Kobayashi, Shinichi*; Zaitsu, Tomohisa*; Shimo, Michikuni*; Fumoto, Hiromichi*

Hoken Butsuri (Internet), 55(2), p.86 - 91, 2020/06

Safety cases for disposal of uranium bearing waste and NORM with uranium has not yet been fully developed in Japan, because of safety assessment of extraordinary long timespan and uncertainty in unexpected incidents with uncompleted radon impact evaluation measures arising from uranium waste disposal facility in far future. Our task group of radiation protection for wastes with natural radioactive nuclides studied some safety cases with disposal of uranium bearing waste and NORM in terms of nuclides, U-235, U-238 and their progenies, and comprehensively discussed the current state of their disposal in comparison to the ideas of international organizations such as ICRP and IAEA. We developed our ideas for long term uncertainty and radon with the knowledge of experts in each related area of direction, repeating discussions, focusing out the orientation of each directions, and outlined the recommendations with our suggestions of solving important issues in the future to be addressed.

JAEA Reports

Waste liquid treatment for uranium liquid waste containing impurities

Sato, Yoshiyuki; Aono, Ryuji; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Testing 2019-003, 20 Pages, 2019/12

JAEA-Testing-2019-003.pdf:2.08MB

In the Radioactive Waste Management Technology Section, the radioactive liquid waste generated in the test using natural uranium in the past has been stored based on the contents of permission. Although we decided to perform solidification treatment in order to reduce the risk in storage, no rational treatment method has been established so far. Therefore, we examined adsorption treatment of natural uranium using uranium adsorbent (Tannix), and finally stabilized treatment by cement solidification. The treatment methods and findings obtained for a series of operations in waste liquid treatment are summarized in this report for reference when treating similar liquid waste.

Journal Articles

Study on criticality in natural barrier for disposal of fuel debris from Fukushima Daiichi NPS

Shimada, Taro; Takubo, Kazuya*; Takeda, Seiji; Yamaguchi, Tetsuji

Progress in Nuclear Science and Technology (Internet), 5, p.183 - 187, 2018/11

After fuel debris is removed from the reactor containment vessel at Fukushima Daiichi NPS (1F) and collected in waste containers in the future, the waste containers will be disposed at a deep geological repository. The uranium inventory and uranium-235 ($$^{235}$$U) enrichment of the fuel debris are larger than those of high-level vitrified wastes which are produced from liquid waste during reprocessing of spent nuclear fuels. Therefore, there is a possibility not to be excluded that a criticality occurs in the geological media where the uranium precipitates at the far-field from the repository, after the uranium located in the repository is dissolved by groundwater. In this study, we calculated the quantity of uranium precipitated at the natural barrier, and studied dimension of uranium deposited in the natural barrier and carried out the criticality analysis.

JAEA Reports

Measurement of uranium spectrum using laser induced breakdown spectroscopy; High resolution spectroscopy (470-670 nm)

Akaoka, Katsuaki; Oba, Masaki; Miyabe, Masabumi; Otobe, Haruyoshi; Wakaida, Ikuo

JAEA-Research 2016-005, 40 Pages, 2016/05

JAEA-Research-2016-005.pdf:1.82MB

Laser Induced Breakdown Spectroscopy (LIBS) method is an attractive technique because real-time, in-situ and remote elemental analysis is possible without any sample preparation. The LIBS technique can be applied for analyzing elemental composition of samples under severe environments such as the estimation of impurities in the next generation nuclear fuel material containing minor actinide (MA) and the detection of fuel debris in the post-accident nuclear core reactor of TEPCO Fukushima Daiichi Nuclear Power Plant. For applying LIBS to the analysis of nuclear fuel materials, it is indispensable to identify the emission spectrum and its intensity on impurities intermingled within complex emission spectra of matrix elements such as uranium (U) and plutonium (Pu). In the present study, an echelle spectrometer with a resolving power of 50,000 was employed to identify spectra of natural uranium of wavelength ranging from 470 to 670 nm. The 173 atomic spectra and 119 ionic spectra can be identified. We have confirmed that the measured wavelength and oscillator strength of spectra are consistent with published values.

JAEA Reports

Measurement of uranium spectrum using laser induced breakdown spectroscopy; High resolution spectroscopy (350-470 nm)

Akaoka, Katsuaki; Oba, Masaki; Miyabe, Masabumi; Otobe, Haruyoshi; Wakaida, Ikuo

JAEA-Research 2015-012, 48 Pages, 2015/10

JAEA-Research-2015-012.pdf:2.22MB

It is important to analyze the next generation nuclear fuel material containing minor actinide (MA) and the fuel debris generated at the accident of Fukushima Daiichi Nuclear Power Station. Therefore, the remote analysis for nuclear fuel materials using Laser Induced Breakdown Spectroscopy (LIBS) is studied. For applying Laser Induced Breakdown Spectroscopy (LIBS) to the analysis of nuclear fuel materials, it is very important to identify the emission spectrum and its intensity on impurities intermingled within complex emission spectra of matrix elements such as uranium (U) and plutonium (Pu). Then, the high resolution spectra of natural uranium of wavelength region of 350-470 nm are measured using LIBS, 247 atomic spectra and 294 single ion spectra were identified. We have confirmed that the measured wavelength and oscillator strength of spectra are consistent with published values.

JAEA Reports

The Possible role of reduced-moderation water reactors and its sensitivity to fuel recycling conditions

Tatematsu, Kenji; Sato, Osamu

JAERI-Research 2004-024, 35 Pages, 2005/01

JAERI-Research-2004-024.pdf:9.97MB

Many scenarios were defined for future development of nuclear power generation and fuel cycle systems in Japan. These scenarios were quantitatively analyzed from the viewpoint of plutonium recycling, natural uranium consumption, stock of spent fuel, etc. Following findings were obtained from the analysis. RMWRs will contribute to control the uranium consumption at certain finite levels if net conversion ratio (CR) is kept higher than 1.0. However, since RMWRs do not have an excellent breeding performance in comparison with FBRs, their effect is very sensitive to the conditions on fuel recycling processes. Judging from the results of analysis using a RMWR design with gross CR 1.06, it would be necessary for RMWRs to have net CR 1.04 in order to replace enriched uranium fuelled LWRs by around the year 2200, and thereby to keep ultimate natural uranium consumption at rather low levels. This can be achieved by controlling fuel duration time outside reactors to shorter than 4 years or 6 years, when total loss of plutonium during the processes of recycling is 1.0% or 0.2%, respectively.

Journal Articles

SHRIMP measurements of U and Pb isotopes in the Koongarra secondary ore deposit, northern Australia

Nagano, Tetsushi; Sato, Tsutomu*; Williams, I. S.*; Zaw, M.*; Payne, T. E.*; Airey, P. L.*; Yanase, Nobuyuki; Isobe, Hiroshi*; Onuki, Toshihiko

Geochemical Journal, 34(5), p.349 - 358, 2000/10

 Times Cited Count:4 Percentile:13.57(Geochemistry & Geophysics)

no abstracts in English

JAEA Reports

Analogue studies in the alligator rivers region; In-situ measurement of uranium series nuclides with SHRIMP

Nagano, Tetsushi; Sato, Tsutomu*; Yanase, Nobuyuki; Isobe, Hiroshi*; Onuki, Toshihiko; I.S.Williams*; M.Zaw*; T.E.Payne*; P.L.Airey*

JAERI-Research 99-024, 52 Pages, 1999/03

JAERI-Research-99-024.pdf:3.3MB

no abstracts in English

Journal Articles

10 (Records 1-10 displayed on this page)
  • 1